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• A computer environment called the Toolkit for Image Mining (TIM) is being
developed to assist users in creating search tools for pattern-matching tasks such
as content-based image retrieval. TIM provides users who have diverse interests
and skill levels with the ability to create and refine search tools in an interactive
process. The user simply points at examples and counterexamples of the object
of interest. A learning algorithm then uses these inputs to build a model of the
user's intentions incrementally; from which a search tool is constructed and a
visual feedback of search results is presented to the user. The user may then
point at mistakes made by the search tool to refine performance further.

Search tools are constructed in the form of functional templates, which are
generalized matched filters capable of Imowledge-based image processing. The
abaity of this system to learn the user's intentions from experience contrasts
with other existing approaches t~ content-based image rettieval that perform
searches on the characteristics of a single input example or on a predefined and
semantically constrained textual query. Currently; TIM is capable of learning
spectral and textural patterns, but should be adaptable to learning shapes as
well. Other possible applications of TIM include quantitative image analysis,
generation of metadata for annotating images, prioritization or reduction of
data in bandwidth-limited situations, and construction of components for more
complex computer-vision algorithms.

A
s THE COSTS OF COLLECTING, STORING, AND

transmitting images have decreased, the sizes
of image collections have dramatically in

creased. Searching and retrieving data in large image
archives is cumbersome and inefficient, and image re
trieval has become the limiting factor in the exploita
tion of images. The severity of the problem and how
to deal with it have become subjects of national dis
cussion [1, 2] and conferences [3].

One way to structure the rapid retrieval ofarchived
images is through the use of metadata-a collection
of keywords and computed indices that are used to
annotate each image. For example, an image can be
tagged with information about its generation. These
kinds of metadata successfully support a query such
as "Find all Landsat images of central Florida col
lected during June of 1993."

While metadata help reduce the scope of a search,
they are not suitable for searches in which the content
must be examined. Examples of this kind of search
include finding images of movable targets in radar
imagery, prospecting for minerals in hyperspectral
image data, locating tropical storms in weather satel
lite images, or identif)ring a face in airport-surveil
lance camera images.

In the past, the most common approach to con
tent-based image searching and retrieval was custom
ized algorithms, which were designed to look for spe
cific signatures. While such algorithms were usually
effective as search tools, they were expensive to create,
were suitable only for the original search problem,
and required an expert in computer vision or image
processing to adapt the algorithm to changing envir
onmental conditions or goals. For example, an algo-
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rithm for detecting deciduous forests in satellite data,
originally designed to work on images that were col
lected in the summer, would require a computer
vision expert to adapt it for use with images taken
during the winter.

Academic and research institutions have been
actively developing image-database retrieval tools that
do not require the user to have computer program
ming skills. Examples include the QBIC System by
M. Flickner and colleagues at IBM [4]; MultiSpec by
D. Landgrebe and colleagues at Purdue University
[5,6]; Image Context Vectors by S.1. Gallant and col
leagues at Belmont Research, Inc. [7,8]; an eigenfilter
approach by R.W Picard and T. Kabir at MIT [9];
and Chabot by VE. Ogle and M. Stonebraker at the
University of California at Berkeley [10].

In general, these tools permit only a single input
example to define a search. The input example var
ies-it can be a word or phrase with a predefined
meaning (e.g., "mostly yellow") [4, 10], a predefined
menu item (e.g., a selected texture from a texture
sampler) [4, 10], a user-drawn shape [4], a user
selected set of pixels [5, 6], a whole image [7-9], and
others. In each case, the input example is character
ized by a set of feature attributes, which can be com
pared with the tagged values of archived images.
Matches between images and the input are evaluated
according to a distance measurement, such as Euclid
ean or Hamming distances, and ranked. Images with
the highest match scores are returned to the user.

Although useful in many applications, these algo
rithms have disadvantages. Many are tailored to the
task ofmatching the example to an entire image [4,7,
8, 10], making the search for a pattern that occupies a
small portion of an image difficult. Another problem
is a lack of flexibility and adaptability. Because queries
and menus are based on a predefined syntax, the
available options may only approximate future needs,
perhaps largely limiting such algorithms to searches
that developers had anticipated.

The biggest problem, however, is that a single
example limits classification performance. A single
example input does not provide a way to establish
what attributes consistently appear in the search
target-the object or region being sought-and what
features consistently discriminate the target from all
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others. The user must search with all feature at
tributes that were predefined by the tool developers,
even if most of the feature attributes are irrelevant and
decrease search performance.

In addition, users cannot incrementally refine a
search tool. When search performance is unaccept
able, the only recourse a user has is to provide a differ
ent example. What the user needs is a way for the
search tools to learn the user's intentions interactively
through experience.

We have created a new approach to content-based
image search and retrieval, embodied in a prototype
Toolkit for Image Mining (TIM) [11]. In this envi
ronment, the user interacts with a learning algorithm
to create and refine customized search tools quickly.
The algorithm learns from experience, building
search tools that are adapted to the user's intentions.

The matching operation is done on a pixel-by
pixel basis, allowing detection even in cases in which
the object or region being sought is a small part of an
image. The trainable search tools are simple in struc
ture so that they can be easily exported as indepen
dent agents to search remote image databases auto
matically. Moreover, the highly modular search tools
can be linked to produce more complex functionality.
Finally, TIM is not limited to only those applications

anticipated by the algorithm developer.
In this article, we first describe the look and feel of

the prototype TIM environment. Then we discuss
functional-template correlation and how it is being
used as the basis of the new approach to machine
learning used in TIM. Finally, we show examples
from our initial work in spectral pattern recognition
in remotely generated images of the Earth's surface.

The Toolkit Environment

TIM enables users who have some knowledge of an
image-exploitation application, but little or no spe
cialized computer knowledge, to construct custom
ized search tools for a variety of applications. Users
must have images on hand that allow them to identify
examples of what they want to find. From these ex
amples, TIM defines a boundary surface that divides
examples from counterexamples in an n-dimensional
data space, in which n is the number of attributes
used to characterize a region or an object.
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TIM is meant to work on any image data, regard
less of the sensor used to collect the imagery. While
the current system described in this article is con
strained to the task of learning spectral and textural
patterns, we believe that the technique can be adapted
to other pattern domains as well, including shapes.

Figure 1 shows the user interface of TIM at the
start of a learning session. The menu window pro
vides options for accessing image data. The Dataset
Selection menu refers to the sensor type, such as "ir3,"

"sar," or a specific problem application such as "elk."
In this example, the word "elk" refers to an elk habitat

study using Landsat Thematic Mapper data.
Once a dataset has been selected, the set of images

available for that dataset is shown in the Image Selec
tion menu. Once an image has been selected, the
available spectral bands in the Band Selection menu
and other pixel-registered images, available through
the Registered Images menu, can be selected as candi
date attribures for learning. The pixel-registered im-
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FIGURE 1.lnitial display screen of the Toolkitfor Image Mining (TIM). The control window on the left shows
a selected band of a three-band infrared image of a town. The portion of the image within the green square
has been selected by the user and enlarged for search-tool training (right).
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ages are typically transformations of the input images,
each providing a pixel-level map for a locally com
puted texture or shape attribute. Such transforma
tions of the input images are generated either from
the outputs of previously created search tools or from
a menu of texture or shape analysis options defined
elsewhere in TIM (not shown), or are generated out
side ofTIM and imported into the environment.

The Permutations menu defines ways in which the
available spectral bands and registered images can be
combined as additional candidate attributes for learn
ing. For example, the pairwise ratios of all bands and
registered images are generated with the (IAA) op
tion, where the letter A stands for "All" bands and reg
istered images.

This example displays a particular band from the
selected dataset and image: the control window la
beled ir3:mc4:B002 MW refers to dataset ir3, image

name mc4, and band B002 (medium wavelength). A
movable zoom box magnifies a portion of the image
and selects a particular subimage for learning.

Once the selections have been made from the im
age-selection window, the user can then choose which
bands or registered subimages to display during learn
ing, by using the Tile Display Manager menu in the
Learning Environment window, as shown in Figure 2.
In this figure, which illustrates how a search tool is
trained to detect water, all bands of a three-band
infrared image are displayed with the abbreviations
Sw, MW, and LW for short-, medium-, and long
wave infrared, respectively.

The displayed subimage contains two bridges
crossing a river. Feedback is presented to the user in
the form of an interest image-a spatial map of evi
dence. This feedback is shown in the current interest
window, or CURlNT Shades of gray indicate how

Demo
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v t.e4IrT*1goff

v GrId on

.. GI'1doff

~ learning Environment

TOOLKIT FOR IMACE MININC (TIM)

FIGURE 2. Example of a TIM learning session. Examples (blue pixels) and counterexamples (yellow pixels)
in a subimage extracted from the image in Figure 1 are used to train a search tool to detect water.
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well each pixel matches the panern encoded in the
search tool. Initially, when no examples or counterex
amples are provided, this window is all black. In the
CURINT window, each pixel is represented by a vec
tor containing six components: the three raw spectral
band values, and the three relevant pairwise ratios
(SW/MW; SW/LW, and MW/LW) selected with the
(I AA) permutations option.

After making the various selections, the user
presses the New button in the Template Manager to
initialize a new functional template, and then presses
the Learning on: Manual button. In this figure, the
user is creating a search tool to find images with wa
ter. The user guides the cursor to an area of the river
in one of the subimages and presses the left mouse
bunon. In response, TIM colors the indicated pixel
blue, as shown in the BOO 1 SW window in Figure 2.
TIM then builds a search tool from the single input,
applies the search tool to the selected subimages, and
displays the match results in the CURINT window.

With a search tool based on only a single example
pixel, the algorithm generally highlights much more
than just river. To refine the search tool, the user can
introduce a counterexample by moving the cursor in
the CURINT window to a high-value pixel that is
not part of the river, and pressing the middle mouse
button. This counterexample pixel is colored yellow,
as shown in Figure 2.

TIM adds this counterexample to the set of previ
ously collected examples and counterexamples, con
structs a new search tool, applies the search tool to the
selected subimages, and again displays the result as
feedback to the user. Figure 2 shows the result of sev
eral input examples and counterexamples in which
TIM has converged on a reasonable search tool for
water in the selected images. Each cycle takes about
one second to complete on a Sun SPARCstation 10.

This two-way dialogue between the user identify
ing mistakes and TIM providing feedback on the
characteristics of the newest search tool continues un
til the user is satisfied with detection performance. At
that time, the user can test the search tool on the
whole image from which the subimages were ex
tracted or other images found in the dataset. Any mis
takes that appear in other subimages can be added as
additional examples or counterexamples.

Once the search tool is complete it can be saved,
either for future use in TIM or for export outside of
TIM. For content-based image retrieval, the search
tool could be sent to an image database to explore
images as an agent of the user. For the agent to make a
retrieval decision, the user would also select one of
several optional criteria for image selection. For ex
ample, the user might request ten images with the
highest summed match scores, or request all images
that have more than some threshold average match
score. The user would explore the returned images to
assess the performance of the agent and to look for
interesting object or region variants found by the
agent. The user always has the option of reentering
the learning environment to refine the agent further.

Knowledge-Based Image Processing

The core technology ofTIM is a new machine-learn
ing algorithm based on two techniques of knowledge
based image processing-interest images and func
tional-template correlation. These two techniques
were originally developed in the context of automatic
target recognition [12], but have been successfully
extended to other areas, particularly to the problem of
automatically detecting hazardous weather in Dop
pler radar images [13-15].

An interest image is a spatial map of evidence for
the presence of a feature [16]. To be useful in a search,
the feature must be relatively characteristic of the
region or object being sought. Pixel values in interest
images range from 0 to 1. Higher pixel values indicate
a greater confidence that an intended feature is
present at that location.

One role for interest images is to serve as a com
mon denominator for data fusion. Input data from a
variety of sensor sources can be transformed into one
or more interest images that highlight a set of features
thought to be indicative of a target. With simple or
arbitrarily complex rules of arithmetic, fuzzy logic, or
statistics, these individual interest images can then be
combined into a single interest image.

The conditions under which an interest image is a
good discriminant can also be used to guide the
weighting of each individual interest image during
data fusion. Ultimately, a detection algorithm with
complex properties can be assembled from a set of
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FIGURE 3. (a) Example of a functional template for the
top view of a tank truck. Input images, derived from laser
radar data, contain values representing height above the
local ground level. These values are probed with the
height index kernel. (b) The indices in the height index
kernel determine which scoring functions are applied to
the superimposed input image pixels. The scores re
turned from the scoring functions are averaged to gener
ate a match score.

simple feature detectors, each of which generates an
interest image. In addition to their role in data fusion,
interest images provide a means of representing infor
mation for human interpretation. Highlighting inter
esting features draws human or algorithmic attention
to a particular image location.

Functional-template correlation (FTC) is a generali
zation of matching filtering and is used to create cus
tomized, knowledge-based image processing opera
tions [17, 18]. By using aspects of fuzzy set theory,
FTC transforms raw image data into maps of match
scores (interest-image values). FTC can most easily be
understood as an extension of autocorrelation, which
is described below. Given an input image I, an output

image 0 is generated in autocorrelation by matching
a kernel K(essentially a subimage of the image being
searched) to a local neighborhood surrounding each

pixel location Ixy.
Each element of the kernel K is a literal image

value expected to be present for a good match. When

Kis tested at each pixel location Ixy' each element of K
superimposes an image value in the local neighbor
hood of Ix]" The sum of the products of these super
imposed kernel and image pairs is normalized and be
comes the match score placed in Ox)" If the shape to
be matched can vary in orientation, then the pixel Ixy
is probed by Kat multiple orientations. The score as
signed to Oxy is the maximum across all orientations.

FTC is fundamentally the same operation as
autocorrelation, with one important exception:
whereas each kernel element of autocorrelation is an
image value, each kernel element in a functional tem
plate is a scoring function that encodes a relationship
between input image values and returned scores.
High scores are returned whenever the input image
value falls within the fuzzy limits of expected values.
Low scores are returned whenever the input value falls
outside these limits. The set of scores returned for
each element of the kernel K are averaged and clipped
to the continuous range of (0.0, 1.0). (In the clipping
process, those averaged scores below zero are assigned
a value of zero, while those averaged scores which are
greater than one are assigned a value of one.)

In our implementation of FTC, a functional tem
plate consists of a kernel of indices; each index is asso
ciated with a scoring function that has been precom-
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puted as a lookup table. As in autocorrelation, if the
feature being sought can vary in orientation, then the
match score is the maximum average score computed
across multiple orientations of the kernel.

Consider the functional template designed to
detect tank trucks in downlooking laser radar images.
In this example, range values have been converted to
heights above ground. Figure 3(a) shows the template
kernel for a tank truck, consisting of integers that cor
respond to the three scoring functions 0, 1, and 2.
Elements of the kernel that do not correspond to the
scoring functions form guard regions in which image
values are ignored and have no effect on match scores.

As shown in Figure 3(b), scoring function 1, corre
sponding to the top of the cab and trailer, returns a
maximum score of 1.0 for heights from 2.5 to 3.5 m,
and strongly inhibits scores for heights below 1.0 m.
Note that scores returned for heights above 4.0 m in
scoring function 1 drop only to a minimum score of
0.5, instead ofdropping to a large negative score, as is
seen for heights near 0.0 m.

The negative scores account for the fact that tank
trucks are opaque to laser illumination, which means

that the presence of ground-level heights where the
cab or trailer is expected gives strong evidence that a
target is not at that location. Heights greater than the
expected interval of 2.5 to 3.5 m result in scores no
less than 0.5-the level of ambiguity-because such
heights could potentially indicate the presence of an
occluding surface. In the real world, the cab of a tank
truck mayor may not be present underneath an
occluding surface at least 4.0 m high.

The other scoring functions work in the same
manner, except that the expected interval of heights
for the background in scoring function a is from 0.0
to 0.5 m, and the expected interval for the hitch area
in scoring function 2 is from 1.0 to 2.0 m. These
scoring functions are tuned such that, when the tem

plate is applied to a patch of bare ground (zero
height), the negative scores from scoring function 1
balance the positive scores from scoring functions a
and 2, resulting in an overall score near 0.0. An un
obscured target should generate a score near 1.0.

In general, by increasing or decreasing the interval
of image values over which affirming scores are
returned (i.e., scores greater than 0.5), the user can

encode which image values are expected with varying
degrees of uncertainty. In addition, knowledge of

how a feature or object appears in sensor imagery can
be encoded in scoring functions. Various design strat
egies can minimize the interfering effects of occlu
sion, distortion, noise, and clutter [17]. Conse
quently, functional templates customized for specific
applications are generally more robust than standard
generic signal-processing operations. FTC has been
used as a direct one-step means of detecting 3-D ob
jects and can be used to implement fuzzy knowledge
based versions of edge detection, thin-line filtering,
thin-line smoothing, shape matching, skeletonizing
of shapes, and shape erosion.

Data-fusion capabilities have been implemented in
FTC, allowing multiple kernels to be stacked as a
single functional template. Each kernel has a set of
scoring functions and probes a different input image,
to produce a single output interest image. This tech
nique assumes that each input image is pixel regis
tered to the others so that spatial scale and geographi
cal area match and that all kernels share a common
center of rotation. A match score for pixel OX] is com
puted by averaging the set of scores computed for all
scoring functions of all kernels. If the target can vary
in orientation, then the kernels of all functional tem

plates are rotated as a unit.

Functional-Template Learning

In functional-template learning, multispectral images
are probed with a kernel constructed for each spectral
band. Each kernel consists of a single pixel and an
associated scoring function. Transformations of the
input data based on local texture or shape analysis are
also assigned a kernel and scoring function. Permuta
tions of multiple bands and/or transformations into a
single value, such as the ratio of two bands, are also
considered as inputs and likewise assigned a scoring
function. Given this structure for encoding spectral
and textural patterns as functional templates, learning
is implemented by constructing each scoring function
from a set of corresponding attribute values. The
attribute values are extracted from the user's set of
examples and counterexamples.

We based our approach to functional-template
learning on the construction of distribution histo-
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Scoring functions are computed by comparing ex
ample and counterexample histograms, as shown in
Figure 4. Each scoring function is implemented as a
lookup table of 256 scores, one for each possible
scaled image value. The score Sk to be returned for
each of the 256 possible scaled input attribute values
(where the index k varies from 0 to 255) is computed
as follows:

Once all scoring functions have been generated,
the algorithm automatically selects a subset of the
most discriminating scoring functions by using the
technique of forward selection [19]. In this tech
nique, the single scoring function that best partitions
the examples and counterexamples is first selected.
Next, the remaining scoring functions are each tested
in combination with the first selected scoring func
tion. Of these pairs, the algorithm again selects the
one that best partitions the inputs. The remaining
scoring functions are then each tested in combination
with the first two selected scoring functions. Scoring

grams. For each attribute (spectral band, transforma
tion, or permutation), two histograms are generated.
One histogram is constructed from the attribute
value for all examples indicated by the user. The sec
ond histogram is likewise constructed from counter
examples. The scoring function is constructed by
comparing how much examples and counterexamples
overlap at each input image value. Once the scoring
functions have been generated, those which produce
the best discrimination between indicated examples
and counterexamples are selected for the construction
of a functional template.

To construct histograms, the system adjusts the
scales of band, transformation, and permutation val
ues. The mean and standard deviations of the ex
ample (but not the counterexample) values are com
puted for each attribute value. These statistics are
then used to scale the attribute values to a range of 0
to 255. The mean value is scaled to 127, while 0 and
255 are mapped to the attribute values that are nstan
dard deviations (where n is typically 3) below and
above the mean, respectively. Attribute values more
than n standard deviations from the mean are clipped

to 0 and 255. This scaling is applied to all example
and counterexample values for that attribute.

Next, the example histogram is constructed from
the set of scaled example values. Each value is added
to the histogram by increasing the count of the corre
sponding bin. For example, if a scaled value is 201,
then the histogram bin at index 201 is increased by
one. If the total number of examples is small, then
some number of bins to either side (e.g., bins 199,
200, 202, and 203) are also increased to approximate
a more fully populated distribution. The number of
adjacent bins to be adjusted is computed in the cur
rent system as follows:

width = int ( J;),
where p is a user-tunable parameter (typically set to
16), n is the number of input example and counter
example values, and int ( ) is the truncation operator.
A counterexample histogram is likewise constructed
by using the same width computed for examples. As
the width value changes with increasing n, the histo
grams are reconstructed.
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FIGURE 4. Construction of scoring functions from example and counterexample histograms. Each example (E) and
cou nterexample (C) selected by the user in an image is characterized by some number of spectral bands or transformed
attributes (variables), represented as V1, V2, .... For each bin of a pair of histograms, a score in the corresponding scor
ing function is computed as in Equation 1.ln bins where there are many example values and few counterexample values,
the returned score is high. In bins where there are many counterexample values with few examples, the returned score is
negative. In bins where there are equal numbers of example and counterexample values, the returned score is zero. The
set of scoring functions that are determined to be most discrimi nating by the method of forward selection are com bined
to form a functional template.

functions are added in this manner until a maximum
partitioning is encountered or a maximum number of
scoring functions has been included. Backward selec
tion-finding the scoring function that when re
moved from the previously accumulated set increases
the partition accuracy-is also an option.

Evaluation

We evaluate search tool functionality with two ex
amples. First, we continue our previous discussion of
using a functional template to search an image data
base for images ofwater. Then in the second example
we discuss using TIM to classify vegetation types in
Landsat data.

To search a database for images ofwater, the search
tool must be assigned some selection criterion, which
may be a threshold applied to some simple statistic
computed from the interest values generated by the
search tool. One selection-threshold mechanism

would be to choose those images with an average in
terest value above a threshold. An alternative would
be to select images in which a number of interest pix
els have values above 0.5.

Figure 5 illustrates the selection results. At the left
side of the figure is the full-size image of Figure 1. At
the right side is the interest image generated by apply
ing the trained search tool to the whole image. The
yellow boxes enclose tiles that have average interest
values of 0.06 or higher in the range (0.0,1.0). The
same mechanism could be applied to the task oflook
ing for high-interest images within a large image data
base. In addition to the functional template created
for water, we have also generated templates for con
crete, vegetation, and asphalt for images created by
this sensor, as shown in Figure 6.

The second example in our evaluation of search
tool functionality examines the more difficult and re
alistic task of classifying vegetation types in Landsat
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OJ

Thematic Mapper images. T.P. Huber and K.E.
Casler have reported how they evaluated a variety of
simple classification metrics and formulas developed
by wildlife biologists [20]. In an image of a 190 X

168-km region in Colorado, each pixel was assigned
one of fourteen vegetation types by analysts. In com
paring classification results with the human-identi
fied "truth," the percentage of correct classifications
did not exceed 50%. Even when the researchers in
cluded digital-elevation, ground-slope, and aspect

data, the performance was still less than 70% correct
classification. Huber and Casler concluded that using
remote sensing information in complex terrains could
be a difficult and relatively inaccurate process.

Using the same Thematic Mapper data, M.
Augusteijn et al. [21] applied a cascade-correlation
neural net (an enhanced version of back propagation)
[22] to classifY spectral patterns. For testing and train
ing, they chose data consisting of homogenous 8 X 8
pixel boxes-all 64 pixels were the same vegetation
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FIGURE 5. Test image (left) and interest image (right) resulting from the application of the functional tem
plate constructed in Figure 2. The yellow boxes overlaid on the interest image are those which contain
more than a threshold average interest value. If the test image represents part of an image dataset, these
boxes would indicate images that would be retrieved for the user to see.

154 THE LINCOLN LABORATORV JOURNAL VOLUME 8, NUMBER 2, 1995



• DELANOY
Toolkit for Image Mining: User- Trainable Search Tools

Bald> fie: IDEMO'
mc4 river

~ phnll river
pllnll aspllOOt

~ pllnll a>ncn>te
pllnl1 foiage

save I ~_"'=meA~l,,-l-----==~ -,
~ meA bridge

FIGURE 6. A test image (left) and four functional templates (right) trained in the TI M environment to recog
nize features such as concrete, vegetation (foliage and fields), and asphalt in three-band infrared data.

type. Of the fourteen vegetation types, only nine were
available in boxes of this size. The task was to train the
neural net on half of these boxes and then attempt to
identifY the types of vegetation in the remaining
boxes. With this approach, they achieved approxi
mately 98.8% correct classifications for the nine
available classes.

We repeated the experiment done by Augusteijn et
al., replacing the cascade-correlation neural net with
TIM and functional-template learning. In addition,
rather than use only 8 X 8-pixel boxes containing a
single vegetation type, we conducted a series of tests
with pixels that were at the center of homogeneous
boxes ofvarying sizes (9 x 9, 7 X 7, 5 X 5, and 3 X 3).

For each box size, halfof the center pixels were ran
domly assigned to a training set while the other half
were assigned to a test set. Functional templates for
each of the fourteen vegetation types were trained

separately. Classification was based on a simple win
ner-take-all strategy; that is, the template generating
the highest match score for a pixel was the one that as
signed the class. More robust decision strategies that
look for patterns in match scores probably could have
achieved better results.

Training was done in an automated mode of the
TIM environment. With truth data available, auto
matic scoring and feedback were possible. A simple
rule-based example selection procedure was imple
mented to locate errors of omission and commission
and automatically add these pixels to the sets of ex
amples and counterexamples, respectively. With these
new inputs, the functional template was modified
and applied to all the training pixels, and the results
were scored to decide what new examples and coun
terexamples should be added next. For each vegeta
tion type, the template that generated the highest
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Table 1. Vegetation Classification Results

Training Data Test Data

Box Size Number of Training N Percent N Percent
Classes Inputs Correct Correct

9x9 10 128 1055 100.0 1101 98.1

7x7 12 494 2766 100.0 2599 98.7

5x5 14 2614 9113 99.9 9305 98.1

3x3 14 13,218 59,527 98.8 59,846 97.5

. '

score during training was the one chosen for testing.
Training ended if one of three conditions was met:
(1) TIM learned to discriminate perfectly the target
vegetation pixels from all other pixels, (2) all instances
of the particular vegetation type had been used for
training, or (3) the total number of examples and
counterexamples exceeded an arbitrary limit.

Table 1 shows the classification performance of
the fourteen templates on initial training boxes and
on separate test boxes. The header Number ofClasses
refers to the number of classes represented by at least
one example. Training Inputs is the total number of
input examples and counterexamples from the Train
ing Data used to train all templates. N refers to the
number of available pixels in the training and testing
datasets. According to the table, trained functional
templates applied to test data performed at a level
comparable to the results ofAugusteijn et al. (98.8%
correct classification for 8 X 8 boxes) using the cas
cade-correlation neural net.

An additional experiment was done by using the
3 X 3-pixel-box trained templates on all 3.4 million
individual pixels. A correct classification percentage
of 83.0% was observed. The lower classification per
formance was due in large part to the high percentage
of pixels lying on the border between two or more
vegetation types. More than 96% of all pixels in the
image were in contact with another pixel having a dif
ferent vegetation type (only 119,373-the sum of
59,527 and 59,846-out of 3.4 million pixels were
determined to be the center of a 3 X 3-pixel homoge
neous patch ofvegetation). Indeed, the 83.0% correct
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classification rate seems robust, given the large num
ber of pixels likely to have mixtures of vegetation
types and correspondingly confused spectral patterns.
For comparison, Huber and Casler achieved less than
50% correct classification for all pixels by using only
spectral information [20].

Table 2 shows the fourteen vegetation classes allo
cated to the Landsat image. Table 3 shows the confu-

Table 2. Vegetation Classes

Class Vegetation Type

Ponderosa pine

2 Douglas fir

3 Spruce fir

4 Mixed conifer

5 Limber/bristlecone pine

6 Aspen/conifer mix

7 Non-vegetated

8 Aspen

9 Water

10 Wet meadow

11 Riparian deciduous shrub

12 Mesic grassland

13 Dry meadow

14 Alpine
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Table 3. Confusion Matrix for All Templates Trained with 3 x 3-Pixel Boxes·

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1.1 98.1 0.2 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.5 97.3 1.9 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0

0.0 0.3 1.3 97.5 0.7 0.1 0.1 0.1 0.0 0.0 0.0 0.0

1.4 0.0 0.0 0.0 92.4 0.0 4.1 0.1 0.0 0.0 0.0 0.1

0.9 1.2 0.0 5.1 0.0 80.5 0.0 12.2 0.0 0.0 0.0 0.0

0.4 0.0 0.0 0.0 0.7 0.0 83.5 0.3 0.0 0.4 0.0 1.7

0.5 0.0 0.0 3.5 0.0 3.3 0.3 90.7 0.1 0.1 1.1 0.4

0.0 0.3 3.0 1.6 0.0 0.0 0.0 0.2 94.9 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.5 0.0 0.0 95.4 1.1 0.4

0.0 0.0 0.0 0.0 0.0 0.0 0.1 4.0 0.0 0.2 95.6 0.0

1.8 0.0 0.0 0.0 0.2 0.0 2.6 1.1 0.0 0.2 0.0 91.0

10,453 98.2

0.0 99.5

2 5506

3 5440

4 4144

5 1290

6 565

7 747

8 1953

9 641

10 539

11 2257

12 1047

13 24,163

14 1101

0.0

0.0

0.4

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.8

0.0

0.0

0.0

0.0

0.0

0.3

0.3

6.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.1

0.0

0.1

0.0

0.0

0.0

1.3

0.0

5.6

0.0

0.0

1.5

0.0

3.1

0.8

0.0

0.1

0.0

0.0

0.5

0.0

7.3

0.0

0.2

0.2

0.0

0.0

0.0

93.2

• Integers down the left margin and across the top of the table are the actual and estimated vegetation types, respectively.
N refers to the number of test boxes classified. Numbers in the body of the table are the percent of test boxes classified
as each vegetation type.

sion matrix for test pixels from the 3 X 3-pixel-box
experiment. Integers down the left margin and across
the top are the actual and estimated vegetation types,
respectively. N refers to the number of test boxes clas
sified. Numbers in the body of the table are the per
cent of test boxes classified as each vegetation type.

Twelve of the fourteen templates achieved more
than 90% correct classification. Many of the errors
can be attributed to the fact that the two templates
with the largest numbers of errors had the second and
fourth smallest numbers of training inputs. In gen
eral, we have observed that the larger the number of
training inputs relative to the size of the sample popu
lation, the better the performance.

In addition, the template trained to identify the
aspen/conifer mix (class 6) mislabeled 12.2% of these
boxes as aspen (class 8) and 5.1 % of them as mixed
conifer (class 4). These classifications would seem to
be reasonable mistakes, given that the aspen/conifer

mix has a spectral signature that is a hybrid of the
aspen and mixed-conifer classes.

Finally, the template trained to detect non-veg
etated locations also had a score below 90%. In this
case most of the errors were associated with naming
the non-vegetated locations (class 7) as dry meadow
(class 13) and alpine (class 14). All three ground
cover types were characterized by high intensity val
ues in all bands, making the spectral signatures simi
lar and more difficult to distinguish.

Besides accuracy, the efficiency of converging to a
satisfactory solution is crucial to the usefulness of an
interactive learning environment. Learning must
occur reasonably quickly. As Table 1 shows, the num
ber of examples and counterexamples selected for
training was typically a small subset of all training
data. For the sake of comparison, Augusteijn et al.
used all available training data five times to train their
neural net classifier.
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Discussion

Data-handling capabilities of computers and com
munications networks are rapidly outpacing those of
humans. Databases will soon contain more data than
humans can scan in any useful block of time. This
data explosion is fueling the development of com
puter tools that can facilitate database searches.

We have designed a way for a computer algorithm
to infer the search intentions of a user on the basis of
the selections made by the user. The process occurs as
a two-way dialogue of feedback. TIM is relatively un
constrained by predefined query languages or menus
of samples, allowing it to be adapted to search tasks
and image data that were not specifically anticipated
in its design.

More traditional approaches to machine learning
might have been used in the TIM framework in place
of functional-template learning. Functional-template
learning, however, has several advantages that make it
particularly well suited to the TIM environment:
1. Preliminary comparisons suggest that func

tional-template learning can compete with neu
ral nets in classification performance.

2. Search-tool generation is rapid-typically from
about a second to a minute on a Sun SPARCsta
tion 10, depending on the number of input
spectral bands and registered images. This speed
enables an interactive dialogue between user
and computer.

3. Because functional templates consist of scoring
functions implemented as lookup tables, and
because functional-template learning uses only
the most discriminating attributes, search tools
constructed in TIM are a computationally effi
cient means of searching images pixel by pixel.

4. Functional templates are easily interpreted and
edited because they are composed of a series of
scoring functions. While we cannot accutately
predict how changing the weight at a particular
node ofa neural net will affect classification per
formance, scoring functions can be edited with
readily predictable results. The ability to visual
ize and edit scoring functions is a built-in part
of the TIM environment.

5. Functional-template learning is capable of rapid
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convergence, which generates reasonable perfor
mance with even a handful of input examples

and counterexamples.
6. Functional-template learning does not assume

any kind of normal distribution of the data.
For several reasons, the search tools generated by

TIM ought to be successful as independent agents ex
ploring image databases on the behalf of users. First,
the search tools can be constructed to match a user's
intentions precisely, increasing the likelihood that the
agent will retrieve what the user really wants. Second,
the functional template and the subroutines used to

generate the various data transformations are concep
tually simple and could be exported not as code but as
data. This simplifies security issues related to allowing
the remote installation of a computer program by an
outside user who might have malicious intentions. Fi
nally, as the agent makes mistakes, the user can con
tinue to modify search performance and not be forced
ro choose between accepting inadequate results or
starting over and building a new search rool.

An application that highlights the usefulness of
learning from mistakes is that of prospecting. Sup
pose a geologist finds an unusual mineral deposit in
the field. Using hyperspectral image data, the geolo
gist might indicate the location of the deposit, intro
ducing it as an example ro TIM. From that single ex
ample, the constructed search tool would create an
interest image highlighting the known deposit and
any other locations with similar characteristics. The
geologist could then visit some of these locations, ei
ther confirming or denying the search tool's assess
ment. Feedback in the form of new examples or
counterexamples would uncover the best discrimi
nants and lead ro a reliable means of finding other
mineral deposits.

An interesting feature ofTIM that is worth further
study relates ro the selection of training data. Most
learning algorithms are trained with a selection of in
puts arbitrarily chosen and organized prior to learn
ing. Selection of a next input is untelated ro how well
the discrimination task has been learned. In contrast,
the learning environment in TIM promotes a more
directed selection of inputs. The use of interest im
ages as a means of visual feedback allows the user to
select new inputs that will most rapidly correct errors
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In discrimination. If a solution exists, convergence
should be rapid. Moreover, a more biased selection of
training data, with inputs chosen by the user to focus
on the most difficult discrimination boundaries in an
n-dimensional variable space, may be able to generate
search tools that are better classifiers than the tools
that would be obtained by random choices of inputs.

Summary

We have presented a prototype workstation environ
ment that enables users to create customized image
database search tools capable of learning from experi
ence. The environment is relatively unconstrained by
a predefined query language or menus of samples,
making it more flexible than other existing ap
proaches to content-based image retrieval. The search
tools generated are based not on a single example, but
are derived from a user-identified set of examples and
counterexamples, allowing TIM to discover complex
solution spaces. As a result, search tools created in this
manner rival the petformance of one-of-a-kind, cus
tom-built classification algorithms and yet can be
built by users with no programming skills.

In addition to the examples presented, TIM is be
ing used to learn signatures of vegetation in Airborne
Visual and Infrared Imaging Spectrometer (AVIRIS)
data, to identify sensor artifacts by texture in Doppler
weather radar data, and to discriminate vehicular tar
gets from clutter in synthetic-aperture radar data.
Aside from content-based image retrieval, potential
TIM applications include quantitatively analyzing
images and trends; generating metadata for annotat
ing images; prioritizing or reducing data in band
width-limited situations; and building components
of larger, more complex computer-vision algorithms.
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